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Abstract
An absolute energy minimum variational principle is used for carrying out linear-scaling
calculations with non-orthogonal localized orbitals. Comparing with results based on
orthogonal localized molecular orbitals, the method is shown to give significantly more accurate
results when the localized molecular orbitals are allowed to be non-orthogonal. This is made
possible by introducing a second minimization for approximating the inverse overlap matrix.
We also show how an exact line search may be used efficiently with the conjugate gradient
method for minimizing the energy functional.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

To address complex problems with electronic structure
calculations, there is a desire to study larger systems over
longer timescales. However, conventional semi-empirical
and ab initio methods are constrained by nonlinear-scaling
operations associated with constructing the one-electron
Hamiltonian. In particular, in order to obtain the eigenstates of
a system, the Hamilton is diagonalized. This operation scales
cubically with the size of the system and, despite a reasonable
prefactor, becomes an inefficient operation for large systems.

The first linear-scaling approach was the divide-and-
conquer method developed by Yang [1] which is based on
exploring the localized nature of the density matrix. This lead
to a surge of interest among researchers in developing linear
scaling electronic structure methods. In general, to achieve
linear scaling, solutions for molecular orbitals or density
matrix must exist that are localized in real space. The canonical
molecular orbitals, which are obtained by diagonalization are
known to be highly delocalized, but they can be localized
by a unitary transformation. Among the many methods for
localizing the density are the minimization of, the Boy’s orbital
spread [2], the Edmiston–Ruedenberg’s repulsion energy [3]
and von Niessens’ charge density overlap [4]. These methods
have shown that a good amount of localization can be achieved

with orthogonal orbitals, but that long-range non-localized tails
are often observed.

More recently, methods were developed to use non-
orthogonal localized orbitals [5–8]. These orbitals, first
introduced in electronic structure calculations by Adams and
Gilbert [9–11], were shown recently to give much better
localization of the electronic density [7, 8]. Also the resulting
orbitals are more transferable between systems, since they only
include information from the local environment [6].

There have been two main categories of approaches to
linear scaling, with density matrix or with localized molecular
orbitals. Knowing that localized molecular orbital (LMO)
solutions exist has encouraged the development of a number
of methods to obtain LMOs [1, 5, 6, 12–30] with an effort that
scales as O(N), where N is the number of electrons.

The divide-and-conquer method, which focuses on
the density matrix, remains a very effective method
[1, 12, 13, 31–34]. The idea is to split up the molecule
into a set of smaller subsystems, each of which is solved
separately with diagonalization. Stewart [30] applied Jacobi
rotations to the Fock matrix to obtain LMOs, while Anikin
and co-workers [35] used a penalty function to enforce
non-orthogonality while solving for the system variationally.
Mauri et al [25] used a conjugate gradient search for the
orthogonal localized orbitals to achieve linear scaling. The
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work of Mauri et al was later generalized to overcome the
multi-minimum problem [26]. Stechel et al used block
diagonalization to solve for the eigenstates in a similar way
as divide-and-conquer [27]. Additional work was done by
Galli and Parrinello [28] in developing a linear-scaling method
applicable to plane-wave calculations, which was extended for
use in the quantum Monte Carlo method [29]. Additional
methods were reviewed in [36, 37].

In this work we show how Yang’s absolute energy
variational principle [5] for linear scaling gives significantly
more accurate results compared to methods which use
orthogonal orbitals. This is due to the increased flexibility
in approximating the inverse, which allows the orbitals to be
orthogonal and more localized. We also give formulas for exact
line searching with conjugate gradient, which significantly
improves the convergence of the minimization.

2. Theory

The energy minimization principle for most electronic
structure calculations is formulated with the electron density
matrix, ρ(r, r′) = 〈r|ρ̂|r′〉. Written in terms of the occupied
states, the one-electron reduced density operator is given by,

ρ̂ = 2
N/2∑

m

|ψm〉〈ψm | (1)

where the states |ψm〉 are normalized and orthogonal. These
states can be expanded in terms of a set of local basis functions
{φ j},

ψm(r) =
∑

j

C jmφ j(r). (2)

For Hartree–Fock or density-functional calculations the linear
coefficients can be obtained by solving the generalized
eigenvalue equation hC = sCε, where hi j = 〈φi |ĥ|φ j 〉
and si j = 〈φi |φ j〉. The canonical molecular orbital solution
is highly delocalized, but there are energetically equivalent,
orthogonal localized molecular orbitals (OLMO) that can be
obtained by a unitary transformation. The existence of such
a localized set of the orbitals is necessary for formulating
a linear-scaling algorithm, as some form of cutoff must be
imposed on the density:

〈r|ρ̂|r′〉 = 0 for |r − r′| > k, (3)

where k is a constant. Since we use local atomic orbitals as a
basis sets, we impose the cutoff by

C jm = 0 for |RLMO
m − R j | > Rc (4)

where RLMO
m is the center vector of the mth LMO and R j

is the position vector of the atom that the j th atomic orbital
belongs to. The constraint that the orbitals be orthogonal is
not necessary, although previously it was thought that releasing
this constraint would not be effective for obtaining more
localized orbitals [24]. However it was recently shown that
using non-orthogonal localized molecular orbitals (NOLMO)
gives 10%–30% better localization [7]. Using NOLMOs
then, we would expect to obtain a more accurate energy than

with OLMOs when the same cutoff given by equation (4) is
imposed.

The density operator in terms of NOLMO can be obtained
from a minimum energy principle. This states that the total
energy, E(N) can be obtained by minimizing the energy as
a function of density, so long as the density satisfies three
conditions: (1) Hermiticity, ρ̂ = ρ̂† (2) idempotency, ρ̂2 = ρ̂

and (3) normalization, 2 Tr[ρ̂] = N .
To preserve the idempotent condition of the density for

non-orthogonal states the density given by equation (1) must
include an extra term. The most straightforward approach is to
use the inverse of the overlap matrix, which gives,

ρ̂ = 2
N/2∑

i j

|ψi 〉S−1
i j 〈ψ j |. (5)

However, solving for S−1 is an O(N3) operation, so instead
approximations to this matrix are used [6, 25]. In [25] a
truncated series expansion of S−1 = ∑M

n=0(I − S)n is used
instead to give an O(N) algorithm, where only odd powers of
the series expansion are used. At the lowest order (M = 1) the
density is

ρ̂ = 2
N/2∑

i j

|ψi 〉(2I − S)i j〈ψ j |. (6)

It was shown in [5] that the generalized inverse of the overlap
matrix, S−, defined by SS−S = S can also be used. A truncated
approximation to the matrix S− can be obtained with O(N)
operations by taking advantage of the relation,

Tr[BS−] = min
X=X†

Tr[B(2X − XSX)] (7)

where B is any positive definite matrix and X is constrained to
be Hermitian. This gives the density as,

ρ̂ = 2
N/2∑

i j

|ψi〉(2X − XSX)i j〈ψ j |. (8)

The same density expression was also given in [6], although
it was derived differently with the constraint that X is positive
definite. To ensure that the method remains linear for matrix
multiplications, in the same way we defined Rc we set a
sparsity pattern for X

Xml = 0 for |RLMO
m − RLMO

l | > RX . (9)

Using any of these expressions for the density, an energy
functional of N/2 orbitals can be defined as,

W [{ψ}, X] = 〈E〉 − 2η〈N〉 + ηN. (10)

For the non-interacting case 〈E〉 = 2 Tr ĥρ̂, 〈N〉 = 2 Tr ρ̂
and η is a parameter which should be larger than the largest
eigenvalue of the canonical solution. Using equation (10) it is
shown in [5] that,

E(N) = min
C

min
X=X†

2 Tr [(H − ηS)(2X − XSX)] + ηN (11)

where H = CThC and S = CTsC. When sparse
matrix operations are used for the matrix multiplications
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then equation (11) can be used as a linear-scaling method.
Equation (11) appears in [5] and is the first of two variational
principles. In the case given here the rank of the matrix C is
restricted to be equal to the number of occupied orbitals, N/2,
so that unoccupied orbitals are not used in the optimization.
The second variational principle developed by Yang [5] allows
the use of unoccupied orbitals and thus permits long-range
density rearrangements during the optimization. This may
make the optimization less prone to being trapped in local
minima, although this problem was not observed for the system
tested in this paper. Thus the present paper only focuses on
using equation (11).

3. Implementation

There are a number of ways to do the minimizations in
equation (11). In [5] it is shown that the variational principle
is valid for any fixed X. This implies that we can perform
the minimization in either order or together as one vector.
Ideally both variables would be minimized concurrently, but
we found that this proves to be inefficient because of the large
number of terms that arise in determining the length of the line
search. Instead we minimized the functional with respect to C,
minimizing the function with respect to X at each step.

For the subsequent formulas we shift the fock matrix to
make it negative definite, by setting h = h − ηs. The gradient
required to minimize equation (11) with respect to C is,

∇C E(C,X) = 8hCX − 4(hCXSX + sCXHX), (12)

and the gradient with respect to X is,

∇X E(C,X) = 4H − 2(HXS + SXH). (13)

The gradient terms can be used with the limited memory
BFGS method or conjugate gradient minimization. These
methods generate a search direction, Δ, for which a length,
λ needs to be determined. Traditional bracketed line search
methods such as those found in [38] can be used. However
since we have the exact analytic form, we can work out λ
exactly. For X we can expand equation (11), assuming C is
constant,

E(C,X) = 2 Tr[H(2(X + ΔXλX)

− (X + ΔXλX)S(X + ΔXλX))] (14)

setting dE(C,X)
dλX

= 0 we can solve for λX giving,

λX = Tr[HΔX(I − SX)]
Tr[HΔXSΔX] . (15)

The convergence behavior for X should be good, since
equation (11) is a quadratic function of X. For C though,
equation (11) is a quartic. This means that we must solve a
cubic equation to determine λC and the convergence behavior
is not expected to be as good as X. Expanding E(C,X) in
terms of ΔC and setting dE(C,X)

dλC
= 0 we get,

Tr[2HXScX − 4HcX + 2HcXSX] + 2 Tr[HXSccX

+ 4HcXScX − 2HccX + HccXSX]λC

+ 3 Tr[2HcXSccX + 2HccXScX]λ2
C

+ 4 Tr[HccXSccX]λ3
C = 0 (16)

where Sc = (CTsΔC + ΔT
CsC)/2, Scc = (ΔT

CsΔC), Hc =
(CThΔC + ΔT

ChC)/2, and Hcc = (ΔT
ChΔC).

Figure 1. Convergence log plot for g = ∇C E(C,X) and
g = ∇X E(C,X) for the molecule C18H38 with Rc = 1 Å and
RX = 2 Å. The minimization is done with conjugate gradient and
exact line searching.

4. Numerical results

In order to test our implementation we focused on octadecane
(C18H38). We used Gaussian03 [39] to generate the Fock
and overlap matrices from a HF/STO-3G calculation. Since
the eigenvalues of the generalized eigenvalues problem are
bounded above by 0.96 a.u. we used η = 1 a.u. The
fock and overlap matrix elements were truncated at 4 Å,
but the intermediate matrix products were not truncated.
SparseKit [40] was used for all matrix operations.

There were 120 atomic orbitals used for this system. We
started out with random elements for the matrix C and then
scaled the rows of C, such that 2 Tr[CT sC] = N . The
LMOs were centered at bonds and lone pairs according to the
Lewis structure. Initially for X, we set X = I. The overall
minimization was done for C with X minimized at each step.
Using this scheme with a well defined chemical structure we
did not observe any local minima other the global minimum
which approximates the ground state energy.

The convergence results for conjugate gradient minimiza-
tion are shown in figure 1. The results of minimizing E(C,X)
with respect to X with C held fixed are clearly very efficient,
with the minimization converging in only about 20 steps. The
minimization with respect to C with X fixed takes about five
times as long. The combined minimization is done by perform-
ing a minimization of X for each step of the C minimization.
The convergence is slower than the individual parts but fortu-
nately the X minimization typically only requires 3 or 4 steps
since the last values of X can be used as an initial guess for the
next step.

In figure 2 we see the convergence results for different
values of Rc and RX . The case of X = I corresponds to
assuming the orbitals are orthogonal by using the first order
approximation of S−1. Any finite cutoff of RX allows the
orbitals to be non-orthogonal. The most dramatic difference
in energy occurs between X = I and RX = 2 Å. For Rc = 1 Å
using X = I, the converged result is off by 6.906Eh, while
for RX = 3 Å the energy is only off by 0.278Eh . This
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Figure 2. Converged difference to the exact energy for the system
C18H38 with different values of Rc and RX . Exc = −417.223Eh is
the exact energy. The point RX = 1 Å corresponds to the results for
X = I.

order of magnitude improvement seems consistent for each set
of Rc curves. For these calculations the exact energy result
is obtained by solving the generalized eigenvalue problem
without using the 4 Å truncation for the elements of the Fock
and overlap matrices.

5. Summary

Our results show that using NOLMO in the energy functional
for linear-scaling calculations give much more accurate values
for the energy, compared to using orthogonal orbitals. This
is due to the increased ability of the orbitals to localize in a
region of space, without the constraint of orthogonalization,
made possible by the flexibility in the approximation of the
inverse of the overlap matrix. Conjugate gradient minimization
with an exact line search designed here gives rapid convergence
of the orbital optimization.
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